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To search a given realinterval for roots, our algorithmis to replace
fIX) by fi{)), its N-term Chebyshev expansion on the search interval
A € [Amine Amad, @nd compute the roots of this proxy. This strategy
is efficient if and only if fi\) itself is expensive to evaluation, such
as when f{x) is the determinant of a large matrix whose elements
depend nonlinearly on \. For such expensive functions, it is much
cheaper to search for zeros of fy{\), which can be evaluated in O(N})
operations, than to iterate or look for sign changes on a fine grid
with f\) itself. It is possible to systematically increase N until the
Chebyshev series converges acceptably fast, without wasting pre-
viously computed values of f(A), by imitating the Clenshaw-Curtis
quadrature. Qur strategy of replacing fix) by fi{x} is similar to
Lanczos economization of power series, which also replaces an
expensive function by a Chebyshev approximation that is more
rapidly evaluated. The errors induced by the Chebyshev approxima-
tion can be eliminated by a final step of one or two iterations with
f(x} itself, using the zeros of f4(\) asinitial guesses. We show through
numerical examples that the algorithm works well. The only sour
note is that it is sometimes necessary to split the search interval
into subintervals, each with a separate Chebyshev expansion, when
fin) varies by many orders of magnitude on the search
interval. ® 1995 Academic Press, Inc.

1. INTRODUCTION

Most methods for solving f(h) = 0 replace the function by
a proxy, and then solve that. For Newton’s method, the proxy
is the two-term Taylor series expansion about the current iterate.
For the secant method, the proxy is the linear polynomial which
interpolates the last two iterates. In this note, we propose (o
replace f(A) by a proxy function which is its truncated Cheby-
shev expansion,

Such a strategy makes sense only if the proxy is cheaper and
less expensive to solve than f(A) itself. This in turn implies that
J(\) must be expensive, that is, require many more operations
to evaluate than f(\}, its N-term Chebyshev approximant. To
illustrate our strategy, we shall focus on nonlinear eigenvalue
problems, which shall here denote an f{\) which is the determi-
nant of a matrix whose elements depend nonlinearly on the eigen-

parameter A. Since the cost of evaluating the determinant of an
M-dimensional matrix is @(2 M?*/3), it is obvious that if M is
large, evaluating f(A) will be enormously costly in comparison
to summing the Chebyshev series to compute fi(\), which can
be done by a three-term recurrence in (N} operations.

The coefficients of the N-term Chebyshev series can be com-
puted by interpolation, which requires N evaluations of f())
plus either a matrix multiplication or a fast Fourier transform.
It is hard to specify an appropriate N a priori, but the algorithm
does not require this, By using the Gauss—Lobatto grid for
interpolation, the number of grid points can be doubled as often
as necessary while reusing all previously computed values of
J(»). The convergence of the Chebyshev coefficients can be
monitored to determine when N is sufficiently large.

The remaining difficulty is that the user must specify a search
interval, that is, an interval in A on which the Chebyshev interpo-
lant will be fitted. However, most root-finding methods, includ-
ing Newton’s iteration and the secant method, require a first
guess for the root. It is easier to estimate an interval than a point!

The complete algorithm is summarized in Table I. In the
next few sections, we shall explain the details.

2. COMPUTING THE CHEBYSHEY APPROXIMANT

To expand a function f(A) as an N-term series on a general
interval A € {a, b], define [1, 2]

c=la+b)2;, d=(b—a)2 2.hH
N=c—deoslr(i— DIN—-D)], i=1,2,.. N (2.2)

Let F denote the column vector with elements
Fi=f\), i=12 .,N 2.3)

Let a denote the column vector containing the Chebyshev coef-
ficients of fy and let H be the square matrix with elements
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TABLE 1

Summary of the Algorithm

1. Choose the following:

(i) Search interval, A € [Amin, Amnl.**

(it) &, the number of grid points.”

2. Compute the roots of fy, the Chebyshev interpolant of f(\).
3. Refine the roots by a secani or Newton iteration with f{A) itself.

“ The search interval must be chosen by physical and mathematical analysis
of the individual problem,

¢If f(A) is badly scaled, that is, varies by many order of magnitude over
the search interval, then split the interval into subintervals so that the range
of f on each subinterval is well within machine precision.

°/N may be chosen by setting N = 1 + 2" and the increasing & until the
Chebyshev series displays satisfactory convergence,

H,=(2/[N — 11) 8;8;cos([i — 117 [j — 1V[N — 1)),

, . (2.4)
i=12,.Nj=12, .,N,

where

172, i=1,N 112,j=1,N
B —{ ; ‘{ (2.5)

s aj_
1, i#L,N I, j#=1,N

Then the Chebyshev coefficients of fy, the Nth degree polyno-
mial which interpolates f(A) at the A, are given by

a=HF, 2.6)

i.e., by the multiplication of a vector by a matrix, which requires
O(2 N?) operations. (Alternatively, this matrix-vector multiple
can be replaced by a fast cosine transform [1].)

The series

N—l

frh) = EO @ T2 — (@ + BB —al)  (2.7)

may be summed in O(N) operations by the initialization
Yy=2(—(a+bDIb—a), b =0, b=0, (2.8)
followed by (N — 1) passes through the loop

by =2yb — b, + Ayti-p J =
by = by,

1,2,..N—1, (2.9

b] = b(}c
Then

fu=ybr — b+ a. (2.1

The choice of the search interval [a, #] depends on the user’s
knowledge of the physics of his/her problem, and no general
rules are possible. However, the selection of ¥ can be auto-
mated.

To determine when N is sufficiently high, we can examine
the Chebyshev coefficients a,, which decrease exponentially
fast with j. Many choices of convergence criterion are possible;
we suggest accepting N when

N-1
la| < e,
j=12mn

(2.11)

where £ is a user-chosen tolerance and [2 N/3] denotes the
integer nearest 2 N/3.

If N is increased from N = v + 1 to 2 v + 1, all the
interpolation points A; from the previous coarse grid are also
points of the refined grid. Thus, nothing is wasted by initially
choosing N too small; all the computed values of f(A) can be
reused for the higher degree interpolation, provided ¥ is of the
form 27 + 1.

A similar ‘‘double-N-and-recycle’” strategy is the basis for
the adaptive, Chebyshev polynomial-based, integration scheme
known as the *‘Clenshaw—Curtis quadrature’” {3, 4].

3. FINDING THE ROOTS OF THE
CHEBYSHEV APPROXIMANT

Because the evaluation of f,{\) is so cheap—ecven for
N = 100, a Unix workstation should be capable of O(10*-1(¥)
evaluations per second—one can use almost any algorithm to
compute the roots of fy(A).

Another option is to convert the Chebyshev series to an
ordinary polynomial, that is, a sum of terms of the form b; A/
One can then call a polynomial root-finder. The danger is that
this conversion is highly ill-conditioned; the coefficients &; of
the powers of A may grow rapidly with j, even though the
Chebyshev coefficients are decreasing exponentially with j. The
advantage of the Chebyshev-to-powers-of-A conversion is the
ready availability of robust library software to solve polynomial
equations. Since the decimal places which are lost to the ill-
conditioned conversion can usually be retrieved by one or two
Newton’s iterations with the Chebyshev form, conversion-to-
powers is a fairly attractive option.

If we rescale A so that A € [a, b] is mapped into A € [—1,
1] and then let b be the column vector storing the coefficients
of the polynomial form

N-1
fuh) = 2:,] by N 3.1
£

and define Q as the square matrix whose elements are
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Then

b = Qa. (3.3)

It is usually easy to compute the roots of the truncated Cheb-
yshev expansion directly, however. For the examples below,
we sampled fy(A) on a fine grid to isolate the roots to within
small subintervals and then we applied the secant iteration.
However, because fy(\) is inexpensive to evaluate, we have
many good choices for computing its roots.

4. NUMERICAL EXAMPLES

Both examples are nonlinear eigenvalue problems; the goal
is to find zeros of the determinant of an M X M matrix A. The
first problem is from Ruhe [5], where the 8 X 8 matrix is
defined by

A=(ek_l)Bi+RZBQ_Bﬁ, (4i)
where By 1s identity matrix multiplied by 100 and

(Bi)y = (9 — max{, )} ij
(B,), =85, + 1/(i + j.

{(4.2)
(4.3)

The first step, for any nonlinear root-finding problem, is to
investigate the individual example as thoroughly as possible
through analytical and qualitative methods. As Acton [6] puts
it, ““If there exists any one reliable algorithm for finding the
roots of transcendental equations it is yet to be found. We
have a variety of medicines that work with varying degrees of
potency ..., but the state of the art still prectudes the confident
writing of computational prescriptions without having looked
over the patient rather closely.”

For the problem (4.1)-(4.3), Ruhe [5] supplies some helpful
theory. For M-dimensional matrices of the form of A(A), the
following has been proven:

(i} There are exactly two M eigenvalues.

(11) All eigenvalues are real.
(i1} n eigenvalues are positive while n are negative,
(iv) all are finite.

Since M = 8 for (4.1), it follows that our search is finished
when we have found 16 roots,
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FIG. 1. |det{A(A))| at 31 Chebyshev collocation points on A € [—8, 8].
Data values are shown as circles, which are connected by straight lines.

To estimate Ay, and A, note that all of the component
matrices B; are individually nonsingular. It follows that when
A is so large or small that one of these three matrices dominates
the others, A(A) must be nonsingular, where ‘‘dominates’
means ‘‘has larger norm.”

For large negative A, exp(h) <1, so

ANy~ N (B,— A ?(B;+B)), rA<-1 4.4)
By comparing norms, we find that B, has larger norm than
(By + B)/A? for all A < 8. Similarly, for large positive A,
exp(d) B, dominates the other terms for X > 8 (roughly).

The physics of the problem then determines the parameters
of the search; To test for roots on A € [—8, 8] until we have
identified 16 eigenvalues. Since the usual rule-of-thumb [1] is
that roughly 7 polynomials per wavelength are the absolute
minimum to resolve a quasi-sinusoidal disturbance—w/2
points/root—it follows that, to fit the determinant over the
whole search interval (with its 16 roots), the minimum N =
31, or roughly two collocation points per root.

Figure 1 illustrates |det(A(A))| at the collocation points. We
note that (i) the determinant is badly scaled in the sense that
it varies in magnitude over the interval by more than the floating
point range on our machine {roughly 10'%) and (ii) the linear
growth for A > 4, which is roughly exp(8 A), suggests that the
exp(A\) B, is dominating the rest of the matrix for smaller
than we estimated a priori. (Note that from the definition of
the determinant, one can show that growth of matrix elements
in each row or column as exp(A) implies that the determinant
will grow as exp{M A} for sufficiently large A, where M is the
matrix dimension.)

The first observation implies that the search interval must
be split into subintervals so that the range of f(A) (=det(A(\))
here) within each subinterval is smaller than the reciprocal of
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FIG. 2. Absolute value of the 31-point Chebyshev approximation to
det(A(X)) on A € [—8, 4].

machine epsilon. (The smallest difference between two floating
point numbers on a given computer is ‘‘machine epsilon,”
2 % 107" here.) On a subinterval, where

JO) < & fonex, (4.5)

where £ is the machine epsilon and f,,, is the maximum of
| £V on the expansion interval, the Chebyshev series—even
in the limit ¥ = s —approximates f(A) by random noise of
amplitude O(e f,,). If there are roots of f(\) within the noisy
subinterval, this is disastrous.

Second, the region of exponential growth suggests that it is
unlikely that there are roots on kA € [4, 8]. So, we will return
to this subinterval if and only if our search elsewhere fails to
locate all 16 roots.

Figure 2 shows that the N = 3! approximation on [{—8, 4]
has 20 roots, each marked by a downward spike on this logarith-
mic graph of the absolute value. Since there are really only 16
roots, it is obvious that N is too small, However, we could
deduce this even without prior knowledge of the true number
of eigenvalues. Inspection of the Chebyshev coefficients shows
that ay_, is O(8) |a,|, where § is ©O(107*) (Fig. 3). On subinter-
vals, where

SO < B(N) frnax» (4.6)
the Chebyshev series will also approximate f(A) by noise. In
other words, an approximation accurate for root-finding over
the whole of an interval [Ay, X\;] requires that

FON o > 8(N), & (4.7)

on the whole of A € [Ay, Aj], except for very small intervals
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FIG. 3. |a,-\ versus J for the 31-point Chebyshev series for det(A())) on
A & [—8, 4]. The ratio of the largest to the smallest coefficient defines 8(NV).

about the roots themselves. The large subinterval of ripples
whose amplitude is roughly 8(31) f,., 18 highly suspicious.

When N is doubled, the Chebyshev approximation repro-
duces all 16 roots faithfully (Fig. 4 and Table IT}). The graph
vividly illustrates the clustering of six roots between A = —4
and A = —3.5, but the Chebyshev series is nevertheless able
to resolve them,

Figure 5 is a zoom diagram of f; (A). Remarkably, there are
only two Chebyshev interpolation points on the interval, marked
by the vertical dotted lines, but the six zeros of det(A(A)) are
nonetheless faithfully mirrored by the Chebyshev approxima-
tion. Piecewise linear interpolation could only detect a single
zero between neighboring grid points. The Chebyshev method
is global, however, in the sense that the approximant on the
small interval shown is computed by using all 61 samples of
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FIG. 4. sign(f;()\)), sampled at intervals of 0.01. The near-vertical lines

mark the roots of the Chebyshev approximation.
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TABLE II

Roots of Problem 1, Exact and Numerical

Exact
An
m Numerical |Error|
1 —7.642558348 1.2E - 13
—7.642558348
2 —4.521556148 —19E - 8
—4.511556129
3 —3.968169057 24E - 5
—3.968194
4 —3.801274897 35E— 4
—3.801274898
5 —3.702761577 4.1E — 4
—3.70175 wo
-3.70295
6 -3.627468151 28E — 4
—2.62605 to
—3.62885
7 —3.571755851 36E — 4
~3.57085 to
=3.57195
8 —3.491852633 6.1E — 5
—3.491791
9 0217461384 6.8E — 10
0.217461385
10 0.884961520 26E — 9
0.884961523
11 1.394724184 4.8E ~ 10
1.394724184
12 1.726304141 15E -9
1.726304140
13 2.007943631 1.2E — 10
2.007943630
14 2.335424784 93E - 11
2335424784
15 2.731077006 84E — 12
2.731077006
16 3.182595850 6.7E — 14

3.182595890

f(N\). Despite the rule of thumb gquoted eartier—one root per
two grid points—the Chebyshev method can sometimes do
much better. The moral of Fig. 5 is that it is necessary to be
very careful in computing the roots of the Chebyshev approxi-
mation, lest one miss roots of f(A) that have been correctly
incorporated in its proxy, fy{(\).

Increasing N produces no improvement because §(61) =~ &;
that is, the last few coefficients of the computed Chebyshev
series are at the roundoff threshold and increasing N would
only generate noise, as illustrated in Fig. 6. Indeed, f; (A} is so
noisy in the vicinity of three of the roots (m = 5, 6, 7) that
the secant iteration did not converge, but instead oscillated
within the small interval shown in Table II. Nevertheless, if
the centroid of these intervals is taken as the best estimate of
the root, all of the roots of the Chebyshev series have absolute
errors of no more than 0.00041.

%100
3

points of Chebyshev grid

Solid: det(A) Dashed: Zero line Dotted:

4 4
5 " : N L L L
-4 -39 -3.8 <17 -6 35 -34
lambda
FIG. 5. Solid: f;;(A}. Dashed: f = 0; the intersections of this with the solid

curve mark the six roots of f5(A) on this interval. Dotted vertical lines: The
two points of the 61-point Chebyshev interpolation grid which lic on the
interval illustrated.

To compute the roots of the fg (M), we sampled it on a fine
grid and then took Mo ~ (&; + N )/2, where N; and Ay are
any two successive points on the fine grid such that sign
(fa(\)) = —sign{ f5(N;+1)). We then applied the secant iteration
to compute the roots of fi,(A) to machine precision (except for
the three where we obtained convergence only to a small in-
terval).

We can purge the errors in the Chebyshev approximation by
performing the final step of the algorithm, refining the roots of
J¥(A\) by secant iterations using f(A) itself.

For this problem, we experimented with a variety of scaling
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FIG.6. |ay, scaled by multiplication by 1E — 7, versus j for the Chebyshev
series for det(A(A)) on A € [—8, 4]. The spectral coefficients plateau for j >
60 at roughly |a;j ~O{s) times the largest coefficient, where & is the machine
epsilon (=2.E — 16).
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functions, that is, computing the eigenvalues by finding the
roots of

S = dettAWD/IS(N), (4.8)
where S(A) is a smooth function chosen to reduce the huge
variations in the magnitude of f(x) that are shown in Fig. 1.
A product of the empirical functions failed. Choosing f(\) as
a sum of Gaussians, each centered on a Chebyshev grid point
with amplitude equal to |f(\))|, failed, too. Using the smallest
singular value of A(R), Ouwin(A), or () = sign{det(A(A)) o (N),
failed also. In each case, the scaling function reduced the range
of [f(\)], but only at the price of clobbering the convergence
of the Chebyshev series. Splitting an interval into subintervals
is the safest practical strategy we have found so far. Perhaps
the reader can suggest something better!

We also solved this exampie by three separate expansions,
each with N = 24, for the intervals in A of [—8, —1], [1, 1], and
{1, 8], and then computed the Chebyshev roots by converting to
ordinary polynomials and applying a library implementation
of the Traub—Jenkins algorithm. Despite the additional errors
caused by the Chebyshev-to-powers-of-A conversion, all 16
roots were computed to at least five decimal place accuracy.

Ruhe [5} has developed an alternative algorithm which is
guaranteed to converge for so-called *‘symmetric overdamped’’
problems, which includes this example. His algorithm requires,
the solution of four linear eigenproblems per root, which at a
cost of O(15 M?) operations per eigenproblem gives a total for
this example which is roughly equal to 1200 evaluations of
det({A(A))—an order of magnitude more expensive than our
method.

Many other alternatives are available such as the methods
of Hayes and Wasserstrom [8], Kublanovskaya [9], and An-
selone and Rall [1(}]. We have not explicitly tested these other
schemes. However, the continuation method of Hayes and Was-
serstrom [8] often fails if the continuation path is real because
collisions of real roots are common, so one must usually employ
a complex-valued path and suffer the expense of complex arith-
metic. The local iteration of Kublanovskaya often, when com-
bined with orthogonalization strategy of Anselone and Rall,
gave all the eigenvalues—but not always. Our Chebyshev strat-
egy is a systematic search for all roots on an interval, so it
seems fair to say that it is very competitive with other algorithms
for solving nonlinear eigenvalue problems.

Our second example is an M-dimensional matrix whose ele-
ments are

Ay={—G—1F—1—1/c+cY
cos(li — 11[j — 11/(M — 1)),

(4.9)
ihj=1,..,M,
which is the Fourier cosine pseudospectral discretization of the
differential equation

uy +{—le—1+ctu=0, (4.10)

where ¢ is the eigenvalue. Differential equations of this form
are common in meterology and oceanography, where ¢ is the
phase speed (or frequency) of a linearized wave. A more realis-
tic model would include y-varying coefficients and non-periodic
boundary conditions, but (4.9) and (4.10) is the simplest equa-
tion which is representative of this larger class [7]. (In the
calculations below, we took M = 40.)

After multiplying through by ¢, Eq. (4.9) becomes a matrix
whose elements are polynomials in the eigenparameter c. Peters
and Wilkinson [8] have shown that problems with polynomial
nonlinearity of degree r and dimension M can always be con-
verted into a linear eigenproblem of dimension M' = Mr.
Indeed, (4.10) is actually the result of reducing three differential
equations in three unknowns, each linear in ¢, to a single equa-
tion, By solving the original trio of equations (*‘linearized
shallow water wave equations’’), we can apply a standard li-
brary routine for the QR or QZ algorithm and avoid all need
for specialized nonlinear eigenvalue software.

The only rub is that the (OZ algerithm has a cost which scales
as the cube of the matrix, being roughly O(15 [M'P). This
implies that the Q7 algorithm is as expensive as 600 evaluations
of det{A(c)). The situation for higher polynomial nonlinearity
of matrix elements is even worse. Thus, there is ample reason
to look for less expensive alternatives to linear eigensolvers.

The first step, as always, is “‘to look over the patient rather
carefully,” in Acton’s words. In this case, geophysicists have
known for several decades that the solutions of (4.10) fall into
three classes: (i) Rossby waves with ¢ € [—1, 0]; (i) westward-
travelling gravity waves with ¢ € [—, —1]; and (iii) eastward-
travelling gravity waves with ¢ € [1, ]. There is a single root
for m = 0 (¢ = 1.32) and the roots for larger integer m are
approximately given by cpogy == —1/(1 + m?) and ¢, =
i(l + m2)i.’2'

This suggests that it will be convenient to search the modes
of each class separately; it is impractical to search a finite
interval in ¢ that spans the Rossby region, because the differen-
tial equation has an infinite number of modes within [—1, 0].
The M-dimensional discretization matrix, of course, has only
M Rossby modes, but their narrow spacing is likely to cause
problems. So, we shall not only make three separate searches,
one for each class of modes, but to compute the Rossby modes,
we shall set the eigenparameter A = 1/c. We can then search
for the lowest few Rossby modes—often the only ones of
geophysical interest-—by searching a portion of the negative
A-axis.

To compute the lowest 14 Rossby eigenvalues, for example,
we chose N = 31 (following our rule of roughly 2 points/zero
at least) and expanded f(A) [= det{A(c))], where A(c) is a
40 X 40 matrix, on the interval » € [—200, —1]. The values
of £(A} at the interpolation points is shown in Fig. 7. Sampling
the Chebyshev series on a fine grid produces Fig. 8, whose
downward spikes clearly mark the 15 roots of the approximant.
Table III shows that all roots of f;;(A) on the search interval
are good approximations to those of the differential equations,
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FIG.7. (Example 2: equatorial waves). Circles: | f(A) at the points of the
31-point Chebyshev interpolant on A € [—200, —1] for Example 2. The data
points have been connected by line segments (solid) for visual clarity.

The largest relative error (as opposed to the absclute errors in
the table) is less than 0.8%.

The gravity modes can be computed in the same way. When
eigenvectors are desired, they can be easily computed by inverse
iteration, just as in a linear eigenproblem, once A is known to
high accuracy [5].

The cost of the 31 evalvations of the determinant of the
40 X 40 matrix to generate Table III is only 55 that of the
Peters—Wilkinson strategy of converting the problem to a linear
eigenproblem and then applying the QZ algorithm, Alterna-
tively, one could find the roots by simply evaluating the determi-
nant on a fine grid, without Chebyshev interpolation, to generate
a plot similar to Fig. 8. The number of grid points needed for
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FIG.8. [fu(\)| on X € [—200, — [, where X is the reciprocal of the phase

speed c. In contrast to Fig. 7, the (inexpensive) Chebyshev interpolant, f(A),
was evaluated on a fine grid with a spacing of 0.1 to produce the curve shown.

TABLE 111

Roots of Problem 2, Roots of Exact and
31-point Chebyshev Approximation

filie)
m Sullfe) | Absolute error|
1G —1.0000 55E — 13
—1.0000
1 —1.6180 S.1E — 3
—1.6089
2 —4.9593 0.036
—4.9233
3 —9.9900 8.0E — 3
—9.9980
4 —16.9965 0.018
—17.0143
5 —25.9985 28E — 3
—26.0013
6 —36.5993 6.5E — 3
—49.9985
7 —49.99%6 LLIE-13
—49.9985
8 —64.9998 23E -3
—65.0021
9 —81.9999 77E — 4
—81.9991
10 - 100.9999 94E - 5
—=101.0000
11 —121.9999 73E -5
—121.9999
12 —145.0000 I1.2E — 4
—145.0001
13 —170.0000 41E -5
—170.0000
14 —197.0000 5.6E — 6
—197.0000

such a non-interpolating search depends on the desired accu-
racy, but would be much greater than 31. Counting the sign
changes between the peints plotted in Fig. 7 misses one root
completely and gives estimates in error by as much as 50% for
some others. Chebyshev interpolation, in contrast, is a way of
maximizing the amount of information that can be extracted
from N samples of f(A).

Increasing N to 61 gave only modest improvement because
the determinant has an 80th-order pole at A = (. We rescaled
the determinant by (i) multiplying through by A? and (ii} multi-
plication by X2/(1 + A?/100); but neither was successful because
the result was too poorly scaled to be represented by a single
Chebyshev series over the whole interval (although the series
with scaling (ii) converged much more rapidly than without
the scaling}. Using two ¥ = 30 expansions on [—200, —10]
and [—10, —1] gave all the roots of the Chebyshev series within
no worse than 5.7 X 1077 of the zeros of f(\). For this example,
too, splitting into subintervals was more effective than any
scaling function we could devise.
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5. SUMMARY

C. Lanczos introduced the idea of *‘economizing’ or ‘‘tele-
scoping’ a power series by approximating M terms of a Taylor
series by an N-term Chebyshev series, where N is much smaller
than M. In [9), he applied this idea 1o compute the roots of a
cubic polynomial. First, just as we have done, he analyzed the
cubic to put bounds on the search interval for the roots of
interest. Then he approximated the cubic by a three-term Cheb-
yshev series and calculated the roots of this quadratic to approxi-
mate those of the cubic. Since an arbitrary function f(A\) may
be represented as a power series and is therefore (in some sense)
a polynomial of infinite degree, it follows that the algorithm we
propose is really just Lanczos economization: Replacing the
expensive function by a truncated Chebyshev series and finding
the roots of the latter to approximate those of f(A) itself.

For expository purposes, we have chosen our examples such
that f(A) is the determinant of a large matrix whose elements
depend nenlinearly on A. However, the ‘‘Lanczos economiza-
tion” algorithm is completely general and can be applied to
any f(h). The only constraint is the practical one that economi-
zation is only needed when f(\) is expensive.

The adaptive Clenshaw—Curtis strategy of systematically
doubling N until the Chebyshev series of f(A) displays fast
convergence is simple and effective. There is no general method
for choosing a search interval, since this is highly problem-
dependent, but usually the physics of the problem will dictate
at least the approximate bounds on the range of interesting
Zeros, and this is sufficient.

The main unresolved difficulty is scaling; an unscaled f{\)
may, especially if it is the determinant of a large matrix, vary
by many orders of magnitude on the search interval. The Cheb-
yshev series will, for sufficiently large N, have small absolute

errors, relative to the maximum of |f(A}| (= fuw), but the
relative errors will be enormous on those parts of the interval
where |f(A)| <€ fos- A good general remedy is domain decom-
position: Splitting the search interval into several pieces and
computing a separate Chebyshev expansion on each.

However, a better strategy would be to multiply f(x) by a
smooth, zero-free scaling function S(\) to reduce the variatons
in the magnitude of the scaled function. Unfortunately, finding
a good scaling function is hard, An open problem is to devise
a good scaling strategy.
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